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Future solar sail and solar power satellite missions will consider using centrifugal forces for deployment and

stabilization. Some of the main advantages with spin deployment are that the significant forces are in the plane of

rotation, and a relatively simple control can be used and the tension in the membrane or web can be adjusted by the

spin rate. Existing control strategies seem to either consume excessive energy or cause oscillations. In this study,

control laws are derived from the solution to relevant optimal control problems and existing controls. The derived

control laws are used in deployment simulations with both simple analytical three-degree-of-freedom models and a

fully-three-dimensional finite element model. The results indicate that the derived control laws can be used to

minimize the energy consumption and oscillations as for an optimal control, yet retain the simplicity of previous

control laws.

Nomenclature

c = constant
F = force vector
J = moment of inertia for the center hub
L = deployed length
L = angular momentum
l = distance from the root of the arm to mass dm
M = torque applied to the hub
M̂ = torque constant in Melnikov–Koshelev laws
mi = mass for part i
N = degree of Legendre polynomial
n = number of arms or nodes
R = position vector
R = radius of the web or membrane
r = radius vector
r = radius of the hub
S = side length of the web or membrane
si = sign of i
T = tensile force in the arm
u = vector of control variables
x = vector of state variables
� = �� ’
� = power in the Melnikov–Koshelev power law
� = rotation angle of the hub
� = density function
� = coiling angle
’ = angle between the arm and the radial direction
 = threshold angle
! = angular velocity (of the hub)

Subscripts

c = corner mass
f = final time
h = hub
t = tether

w = web or membrane
0 = initial time

Superscript

i = coordinate system i

Introduction

L ARGER and lighter structures are required for many space
technologies (e.g., solar sails and solar power systems). Flexible

structures have the potential to keep the weight and package volume
small and be deployed to the required size in orbit [1]. One interesting
method to deploy and stiffen flexible structures is to use the
centrifugal force, which offers significant advantages compared with
rigid alternatives [2]: low mass, small package volume, low deploy-
ment power consumption, possible gyroscopic repointing, accept-
able surface accuracy, and presumably low cost.

In the early 1960s, Astro Research Corporation analyzed several
large spin-stabilized space structures [3–8]. Two feasibility studies
that provide important information are the Heliogyro solar sail [6],
with flexible extendible rotor blades, and the large-aperture
paraboloidal-reflector low-frequency telescope (LOFT) [4–8]. The
first and only successful spin deployment of a large structure in orbit
is the Russian 20-m-diam reflector Znamya-2 that was deployed in
1993 [9]. Six years later, the deployment of the 25-m-diam mirror in
the follow-up experiment Znamya 2.5 failed because the membrane
got caught in an antenna [10]. Spinning was considered in many of
the early solar sail studies and recent spin concepts are developed for
the Interstellar Probe Mission [11,12] and the UltraSail [13]. In
2004, the Japanese Institute of Space and Astronautical Science
successfully demonstrated the deployment of a clover-type sail and a
fan-type sail [14]. Several related concepts have been analyzed and
tested both on ground and in space in Japan [15–20].

Space webs, in which spiderlike robots are used to build large
structures on a web platform in orbit, were considered by Nakasuka
et al. [21,22] for the Furoshiki satellite. The difficulty in deploying
large structures in space was demonstrated in the Furoshiki
experimentwhen theweb entangled because of the rapid deployment
and communication problems between the main satellite and the
thrusters in the corners of the triangular web.With the aim to obtain a
deployment that is easier to control, recent studies investigate the
possibility to use the centrifugal force to deploy and stabilizewebs in
space [23–28].

Simple analytical models exist [8,9] in which the only degrees of
freedom (DOF) are the center hub angular velocity, the length of the
deployed web or arms, and the deviation angle of the web or arms
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relative to the radial axis. Multiparticle models with spring-mass
networks have also been presented, with constants determined
experimentally [14] and analytically [29]. Most membrane deploy-
ment models (e.g., [2,9,14]) focus on folding patterns for the
deployment of split membranes with sections that can be folded on
separate reels and be assembled after the deployment, even though
Melnikov and Koshelev [9] also included a model for continuous
membranes.

The present authors have recently presented a space web
deployment concept including a prestressable web geometry and
topology, a suitable folding pattern, and a two-step deployment
scheme [23–26]. A recent study [28] shows that a one-step
deployment from the same folding pattern is preferred if tether
control is not used. The omission of the tethers decreases the risk of
entanglement, but also decreases the redundancy for the system. An
analytical model of the deployment of the first step of continuous
quadratic space webs, folded into radial arms coiled around the
center hub, and a finite element (FE) model implemented in the
commercial software LS-DYNA, were also developed.

Existing control strategies for centrifugal deployment of
membranes and webs have not been obtained by mathematical
analysis. Contrary, extensive research has been performed on the
dynamics and control of deployment and retrieval of tethered satellite
systems (TSS), which can be used as inspiration for modeling the
spin deployment of membranes. A recent literature review on the
dynamics and control of nonelectrodynamic TSS was presented by
Kumar [30]. Different optimal control methods have been used for a
subsatellite connected to a shuttle in a Keplerian orbit. Bainum and
Kumar [31] used linear optimal control theory based on an
application of the linear quadratic regulator method. A Lyapunov-
based approach was used by Fujii and Anazawa [32] for nonlinear
optimal tension control. Barkow et al. [33] compared free deploy-
ment, deployment using Kissel’s law, optimal control, and
controlling chaos strategies. Williams [34] found optimal deploy-
ment and retrieval trajectories using direct transcription methods for
different spin conditions and discusses various optimality criteria
[35]. We observe that optimal control of TSS models includes less
variables than centrifugal deployment; the orbital angular velocity is
constant and no torque is applied.

The aim of this study is to find control strategies for the
deployment of membranes and webs, coiled on spools or coiled
around a center hub, that minimize the energy consumption and the
presence of final oscillations. Because all the significant forces, both
external and rotational inertia forces, are in the plane of rotation, it is
enough to solve this problem in two dimensions, even though
additional attitude control may be required to maintain the plane of
rotation for a real case. The Legendre pseudospectral (PS) optimal
control method [36,37] is used to find optimal controls for different
optimality criteria. The Legendre PS method has previously been
used to develop attitude trajectories for zero-propellant maneuvers
for the International Space Station [38] and optimal deployment and
retrieval of tethered satellites [34,35]. The three-DOF models
[8,9,28] were chosen to describe the dynamics of the problem. New
control laws, derived from the optimal control results and the control
strategies in [8,9], are proposed. The new control laws are investi-
gated with both the analytical model and a fully-three-dimensional
FE model.

Existing Controls for Spin Deployment

Several studies [9,23,28,29,39] have shown that uncontrolled spin
deployment, in which the uncoiling of the web from the hub is
initiated by the initial spin and the system is left alone, leads to
repeated coiling on and coiling off of the web to and from the hub.
Some kind of control is therefore required.

Several control strategies for the deployment of membranes are
described in literature. However, in most studies (e.g., [6,11,12,40]),
the focus is not on the mathematical analysis of the deployment.
These strategies were discussed in [28].

Hedgepeth [8] considered to use either the torque, the deployed
length of the radial tethers, or the tensile force in the tethers as control

parameters and concluded that a simple drag-brake type of control for
the tethers is feasible with a simple two-step scheduling of the spin-
up torque. This two-step scheduling consists of keeping the torque
constant at approximately 200Nm and theweb tension constant until
about 40% of the deployment is complete and then rapidly
decreasing the torque to zero and at the same time decreasing theweb
tension. However, Hedgepeth [8] noted potentially detrimental
oscillations after both the initiation of the deployment and the
termination of the torque.

MelnikovandKoshelev [9] decided to use the torque applied to the
center hub and the velocity of the spools, which the reflector parts are
fed out from, as control parameters for the deployment of the
Znamya-2 reflector. They investigated two control laws: 1) constant
angular velocity, atwhich the coiling-off-and-on phenomenonwould
occur and 2) a torque with drooping characteristics, which ensures a
stable deployment. The successful control law increases the torque
applied to the hub as the angular velocity decreases:

M� M̂
�
1 � !

!0

�
(1)

where!0 is equal to the initial angular velocity of the system and M̂ is
themaximum torque if! � 0. Henceforth, Eq. (1) is referred to as the
Melnikov–Koshelev (MK) law. Melnikov and Koshelev [9] found
that a higher value of the quotient M̂=!0 yields a more stable
deployment. Using this strategy, a high initial angular velocity, a low
final angular velocity, a short deployment time, and a stable and
smooth deployment without entanglement and recoiling are ob-
tained. Unlike tethers or split reflectors, as in [9], continuous space
webs are cumbersome to feed out from spools. As a consequence, the
deployment rate cannot be controlled by the spool velocity.However,
by folding theweb into arms and then coiling them around the center
hub, the deployment rate is determined and controlled by the hub
spin [28].

To apply the torque, Melnikov and Koshelev [9] proposed to use
an electric motor that spins up a counter-rotating system. Because of
conservation of angular momentum, the hub–web system spins the
other way around. The counter-rotating system (e.g., a flywheel) also
stores the kinetic energy, spin-stabilizes thewhole system, and can be
used for reorientation of the spinning space web.

Themain advantagewith theMK law is that it is not directly linked
to the analytical model, and therefore it is less dependent on the
model accuracy. Sufficient agreement between the analytical model
and the real behavior is required to determine suitable values of the
parameters M̂ and !0, but this type of control includes feedback
correction on its own because it adjusts the torque based on the
measured value of!. The disadvantage is that torque is continuously
applied until !� !0 again, which is energy consuming and requires
increased material strength because both the kinetic energy and the
centrifugal force are proportional to !2. Alternatively, the torque
must be turned off before the arms are in the radial direction, which
induces oscillations that are approximately proportional to the angle
relative to that direction [28]. A control law that enables a low final
angular velocity, yet deploys the web without oscillations, is
required.

Dynamic Model

A relatively simple analytical model is required to describe the
dynamics of the problem to compute the optimal control and the
optimal trajectory in reasonable time. Two-dimensional models with
only three DOF have been used to describe the dynamic deployment
behavior for star folded webs [28] and membranes [9]. The results
for such models show good agreement with more advanced FE
models [28] as long as the arms are straight and the deployment is
slow enough to not include elasticity, which is true for most rele-
vant controlled deployments. A similar model was also used by
Hedgepeth [8] to describe the LOFT deployment (Fig. 1), and hub-
wrapped membranes can be described with similar models [23]. The
model does not differentiate between membranes and webs or
between separate arms and strings of a continuousmembrane orweb,
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and so in the following they are denoted as membranes and arms,
respectively. The DOF are the angular velocity of the center hub, the
deviation angle of an arm relative to the radial direction, and the
current length of the arm. The angular velocity of the center hub, not
the orientation, is used as a DOF, because its exact position is not of
interest. For membranes coiled around the hub, the deviation angle is
instead the angle that the membrane is coiled around the hub and the
current length of the arm is directly related to the angle.

The following assumptions were made for the analytical
centrifugal hub–membrane model [28]:

1) Effects of gravity or orbit or hub direction in the orbit were not
considered.

2) Out-of-plane motions were not included.
3) The arms were supposed to be straight and deployed

symmetrically relative to the central axis.
4) The elasticity in the membrane was neglected.
5) Energy dissipation caused by deformation, friction, and

environmental effects was neglected.
The effects of a gravity gradient are negligible during the time of

deployment [9]. Out-of-plane motions could be a problem initially,
when the rotational inertia forces are small, but the folding and initial
velocity should be chosen so that these motions are minimized.
Assumptions 3 and 4 hold for relevant controls [28]. Energy
dissipation could occur and is difficult to quantify, but it will only
contribute to damp out oscillations.

Similar models have also been used for optimal control of tether
deployment and retrieval of a subsatellite from a shuttle in Keplerian
orbit [32–35]. Even though tether deployment and centrifugal
deployment of membranes are different in reality, the mathematical
formulations are similar: the point at which an arm is attached to the
center hub corresponds to the shuttle and the endmass corresponds to
the tethered subsatellite. The differences between the models are that
the tether model assumes constant angular velocity for the shuttle in
orbit and includes the gravitational potential, whereas the change of
angular velocity is essential for the centrifugal hub–membrane
model but the gravitational forces can be neglected, compared with
the centrifugal forces.

Equations for Straight Arms

Three equations are required to solve for the three unknown DOF.
Here, the change of angular momentum for the hub and two
equations ofmotion for the arms in the plane of rotation are available.

The change in angular momentum, due to the applied external torque
and the torque exerted by the pulling arms, for the central hub in
Fig. 2 is

_L�M� n�r � F� (2)

Projected along the axis of rotation it becomes

J _!�M� nTr sin’ (3)

Note that J is not constant if the web is deployed from the hub and
out. Summing the contributions from all small masses dm along an
arm, the equations of motion becomeZ

L

0

�R��l�dl� F (4)

where �R is obtained from Fig. 2 as

R � r� l (5)

and the derivatives of R become

_R�! � r� l0 � �!� _’e�2�3 � � l (6)

�R� _! � r�! � �! � r� � l00 � 2�!� _’e�2�3 � � l0

� � _!� �’e�2�3 � � l� �!� _’e�2�3 � � ��!� _’e�2�3 � � l� (7)

where prime denotes derivation in the local coordinate system (2).
For a general case, in which the model assumptions are valid, the
equations of motion become

a�r�!2 cos’ � _! sin ’� � �L	 � b�!� _’�2 � nT (8)

a�r� _! cos’� !2 sin ’� � 2 _L�!� _’�	 � b� _!� �’� � 0 (9)

where the functions a and b depend on ��l� for the chosen folding
pattern and membrane geometry. For arm deployment of a quadratic
membrane with corner masses [23,28], a and b are

a� a�L� �mc �
mwL

2

L2
max

(10)

t

Fig. 1 LOFT deployment.
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Fig. 2 The analytical model for a point mass or mass distributed over

the arm length.
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b� b�L� � L
�
mc �

mwL
2

3L2
max

�
(11)

where Lmax � S=2 � �r=n. Because n is included on the right-hand
side of Eq. (8),mc is the total mass of all corners, not themass in each
corner. For a split circular membrane [9] or its continuous equivalent,
a hub-wrapped circular membrane [23], a and b become

a� a�L� �mwL

L2
max

�2Lmax � L� (12)

b� b�L� �mwL
2

L2
max

�
Lmax �

L

3

�
(13)

where Lmax � R� r. Note that this does not give a perfect circle, but
close enough if R
 r. For LOFT [8],

a� a�L� �mc �mt �
2mwL

L2
max

�
Lmax �

L

2

�
(14)

b� b�L� � L
�
mc �

mt

2
�mwL

L2
max

�
Lmax �

L

3

��
(15)

whereLmax � R � r. Evidently, Eqs. (8) and (9),with the appropriate
expressions for a and b, can also be used for a point mass, where
mw �mt � 0, or if there are no corner masses (i.e.,mc � 0). Similar
expressions for the functions a and b can be obtained for different
folding patterns [9,23].

Equations for Arms Coiled Around the Hub

For a web or membrane that is coiled around the hub (Fig. 3),
only two DOF, ! and the coiling angle �, are required because L is
given by

L� Lmax � rj�j (16)

Because T is unknown, three equations are still required. The
equations are [28]

J _!�M � s�nTr (17)

� s�ar _!� b�!� _��2 � nT (18)

s�ar�!2 � _�2� � b� _!� ��� � 0 (19)

where L in a and b are replaced with Eq. (16).

Dynamic Constraints for Arms Coiled onto Spools

If the membrane is deployed from spools on the tip of the arms, as
in [9], or in separate parts from spools at the center hub, as in [8], then
bothN andM are used to control the deployment. The vector of state
variables is

x � x1; x2; x3; x4; x5
� �

T � !; ’; _’; L; _L
� �

T (20)

and the vector of control variables is

u � u1; u2
� �

T � M;nT
� �

T (21)

and the governing equations can be written as a system of nonlinear
ordinary differential equations:

_x�

_!
x3

� _! � a
b
�r� _! cos x2 � x21 sin x2� � 2x5�x1 � x3�	

x5

r�x21 cos x2 � _! sin x2� �
b

a
�x1 � x3�2 �

u2
a

0
BBBBB@

1
CCCCCA

(22)

where

_!� u1 � ru2 sin x2
J

(23)

Dynamic Constraints for Arms Coiled Around the Hub

If the arms are coiled around the center hub, only two DOF,
corresponding to three state variables, are required. The vector of
state variables is

x � x1; x2; x3
� �

T � !; �; _�
� �

T (24)

where we have introduced the variable

�� �� ’ (25)

because coiled arms become straight when they are completely
coiled off. It is not possible to control the coiling-off rate directly.
Therefore, the vector of control variables is simply a scalar:

u � u1 �M (26)

As shown in the previous sections, different equations are used to
describe the deployment when the arms are partially coiled around
the hub andwhen the arms are straight. If j�j< �=2 (i.e., the arms are
straight), the system of ordinary differential equations to solve are
derived from Eqs. (3), (8), and (9):

_x�
_!
x3

� _! � a
b
r� _! cos x2 � x21 sin x2�

0
B@

1
CA (27)

where

_!� u1 � r sin x2�arx
2
1 cos x2 � b�x1 � x3�2�

J� ar2sin2x2
(28)

Instead, if � < ��=2 (i.e., the arms are coiled clockwise around the
hub), then

_x�
_!
x3

� _!� a
b
r�x21 � x23�

0
B@

1
CA (29)

where

_!� u1 � br�x1 � x3�
2

J� ar2 (30)

and L in a and b is given by

θ

φ

r

m

Lmax-
O

ϕ

c

φ

rr φ

Fig. 3 The analytical model for an arm coiled around the hub.
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L� Lmax � r
�
x2 �

�

2

�
(31)

Finally, if � > �=2 (i.e., the arms are coiled counterclockwise), the
differential equations are obtained analogously as for � < �=2 from
Eqs. (17–19).

Optimization

The goal of this study is to find control laws that bring the dynamic
systems in the previous section from the folded configuration to a
configuration close to a final steady state without exceeding certain
upper and lower limits for the control and state variables.

Problem Formulation

A general optimal control problem is to minimize the Bolza cost
function

min
u2U

Z
tf

t0

F�x�t�; u�t�; t�dt�G�x�t0�; t0; x�tf�; tf� (32)

subject to some dynamic constraints

dx

dt
� f�x�t�; u�t�; t� (33)

boundary conditions

g �x�t0�; t0; x�tf�; tf� � 0 (34)

and inequality path constraints

h �x�t�; u�t�; t� � 0 (35)

where x�t� is defined in Eq. (20) or Eq. (24) and u�t� is defined in
Eq. (21) or Eq. (26).

Optimal Control Methods

Optimal control problems can be solved by either indirect or direct
methods. For the present problem, it is possible to obtain the
optimality conditions required for indirect methods, but the result is a
multipoint boundary value problem that is very complicated to solve.
Direct methods directly discretize the continuous optimal control
problem and transcribe it into a parameter optimization problem that
can be solved using standard nonlinear programming (NLP) tools
[41]. Direct transcription of optimal control problems requires
approximations of the integration in the cost function, the differential
equations of the state-control system, and the state-control constraint
equations, and, ideally, the same collocation points should be used
for all.

One possibility is to use PSmethods, which convergewith spectral
accuracy for smooth problems [42] and are efficient for all the three
approximations, as proved in [43]. All PSmethods use an orthogonal
polynomial of degree N evaluated at N � 1 points. The points are
usually the N � 1 roots of the polynomial and the boundaries of the
domain ��1; 1	. Exact integration for a polynomial of degree N is
obtained for this set of points.

The Legendre PS (LPS) method is the most widely used PS
method because of its proven convergence properties and because it
is possible to accept or reject solutions based on the optimality
conditions [43]. In LPS, Lagrange interpolation polynomials, based
on the Legendre polynomial of degree N, are used to derive trial
functions that connect the continuous and discrete state and control
variables. The Legendre–Gauss–Lobatto points are used as
collocation points. The Gauss–Lobatto quadrature rule is used for
the integration of the objective function. TheLPSmethod is available
in the MATLAB-based commercial code DIDO [44]. Here, the
problem was instead solved directly in the Comsol script [45]
because the implementation of the algorithms is rather straightfor-
ward. The NLP problem was solved using the SNOPT-based [46]
Comsol Optimization Lab [47].

Choice of Objective Function, Boundary Conditions, and Path

Constraints

An optimal control is only optimal with respect to its optimization
criteria. Different optimality criteria for the deployment and retrieval
of tethered satellites, using elastic and inelastic tether models, were
discussed by Williams [35], who found that it is important to
minimize the length acceleration, the tension rate, and the tension
acceleration. These conclusions are valuable, but for spin deploy-
ment of membranes, the torque application is very important and
elasticity of the web is less important.

An optimal spin deployment should 1) cause a minimum of
oscillations in the end and 2) require a minimum of control efforts,
which could be to minimize the maximum power or torque, or
minimize the total energy consumption or total change of angular
momentum, or a combination. A third requirement could be that it
should be completed within a specified time. Complete deployment
is obtainedwhen 1) themembrane has reached its full size,L� Lmax,
2) the system is spinning with the desired angular velocity, !� !f ,
and 3) the system is in steady state, _L� �� _�� 0.

Note that if a control law can be found so that the path constraint
M�t� � 0 (for all t) holds, and the final state L� Lmax, !� !f, and
�� 0 at t� tf is obtained and is in steady state, then the control law
forM minimizes both the integrals

Z
tf

0

Mdt (36)

and
Z
tf

0

M!dt (37)

(i.e., the increase of angular momentum and kinetic energy), because
a surplus of angular momentum and energywould give oscillations if
damping is not present, and a deficit of them would not give full
deployment at the desiredfinal angular velocity. This implies that any
solution that fulfills this is optimal in this sense, but it also implies
that the solution is not unique, as will be shown in the results.

The parameters _� and ! are also closely interconnected. This
suggests that relevant optimal problems are to minimize �� and _! or
the integral of the applied torque or power, together with constraints
on the final state. Unfortunately, neither of these attempts converged
for the present problem and a compromise had to be selected.

Quadratic criteria are preferred because the existence of deriva-
tives and the second derivatives of the objective function improves
the convergence properties, especially if the control variables are
included. However, for minimum-fuel problems it has been shown
[48,49] that quadratic objective functions are less efficient than to
actually minimize the energy consumption, which can often be
achieved with bang–bang control. On the other hand, quadratic
criteria render smooth curves for the control variables, which is an
advantage compared with bang–bang control for centrifugal
deployment for at least two reasons:

1) A time lag from the commanded to the real torque application
has less significance.

2) Oscillations, which are difficult to damp out, may be induced
with bang–bang control.

Also, squared integrands can be interpreted as combinations
between the mean and the maximum values, which is useful here.

Performance indices that were considered as part of the objective
function are listed in Table 1. Different optimization criteria are
suitable for membranes folded around the hub and for those folded
onto spools, because different state and control variables are used.
Also, different criteria are suitable for the deployment phase, where
L! Lmax, and the stabilization phase, where �! 0, but because it
is difficult to a priori determine the phase shift, the same criterion is
preferably used for both phases. In reality, tf �1, but for
computational reasons it is sufficient to truncate the integrals and
choose a suitable tf. To obtain convergence, it seems better to not
include the final state in Eq. (34) and to instead make it part of the
objective function. Possible explanations may be the oscillatory
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behavior, or the rapidly changing dynamics, of the deployment.
Objective function 6 in Table 1 does not exactlyminimize the angular
momentum, but was chosen because its superior convergence
properties compared with functions 8–12. Function 4 is required to
obtain complete deployment. Function 1 is required to get the desired
!f. It seems natural to use minimization of the difference compared
with the desired final values only at the final time step, but all such
attempts failed to converge.

For membranes coiled around the center hub, the initial conditions
are !�t0� � !0 and

��t0� � ��t0� � ’�t0� � ��=2 � �Lmax � ��=r0

If they are instead coiled on spools, !�t0� � !0, ��t0� � 0, and
L� �. The parameter � is small, but required to start the deployment.
In both cases, _��t0� is arbitrary.

Path constraints must be imposed on the state variables: L is
restricted to 0 � L � Lmax because of the arm length, and ! > 0 is
required because changed hub rotation often cause an unstable
deployment [28]. For deployment from spools, j�j< �=2 is required
to avoid coiling onto the hub and j�j< �=6 decreases the risk of
entanglement [9]. Some path constraints may also be imposed on the
control variables. The torque should have the same sign as!, because
energy is wasted if the torque is applied in the direction opposite to
the hub rotation. In reality, there is also a maximum torque of the
electric motor, but here it was considered more interesting to observe
how the choice of objective function affected the torque. T is a tensile
force (i.e., T > 0) and its upper limit can possibly be chosen as the
static force (i.e., the force when the web is completely deployed).
However, it is better to omit the upper constraint and instead reduce
the initial angular velocity if T becomes too high. All these
limitations can be included in Eq. (35). However, it may occasionally
be necessary to allow slightly larger or smaller values to obtain
convergence.

Initial Guess and Scaling

A sequential quadratic programming (SQP) algorithmwas used to
solve the NLP problem. Because SQP algorithms search for locally
optimal solutions, it is essential to provide an initial guess for the state
and control variables at the collocation points that is sufficiently close
to the optimal solution. Furthermore, the initial guess must be
sufficiently smooth, which may be a problem for centrifugal force
deployment because of its inherently oscillatory behavior. The
results from a simulation using the MK law fulfill both these
demands.

Scaling could improve the convergence of NLP solvers. Attempts
were therefore performed to scale the length and time scales so that as
many state and control variables as possible had maximum values
near 1. However, no improvement of the computational time was
achieved. Instead, the main computational problem here was to
determine �� from the dynamic equations, especially if ! is much

greater. This cannot be improved by scaling. Furthermore, all
constraints and variables were scaled automatically by Comsol’s
SNOPT-based NLP solver [47] using an iterative procedure that
attempts to make the matrix coefficients as close as possible to 1.0.

Finite Element Model

The analytical model cannot accurately describe one-step
deployment of space webs. Therefore, a three-dimensional finite
element model, including a center hub, a web, and four corner
masses, was implemented and solved using explicit time integration
in LS-DYNA [50]. The model was described in detail in [28]. The
main differences compared with the analytical model are that other
deployment sequences than arm deployment can be studied with the
FE model, the arms are not necessarily straight during the
deployment, the cables can store elastic energy, and perturbations
can be studied. Gravity gradients, energy dissipation, and orbit
effects can be included, but have been considered to be small for
membranes in comparison with the rotational forces [9] and should
be even smaller for a web.

Themodel of the initial folded configuration is very important as it
provides the initial geometry and the initial velocities that determine
the deployment sequence, deployment rate, and control require-
ments. The governing equations of the folding schemewere given in
[23]. The size of the hub in the FE model is dependent on the mesh
width of theweb for reasons of folding and hub–web interaction [23].
In reality, the mesh width of the web would be, at most, 30 mm,
whereas a significantly larger mesh width, 2.5 m, was used in the FE
model for computational efficiency. The contact between the cables
and the rigid center hub was modeled using the kinematic constraint
method, which implies that cables in contact with the hub follow the
hub. Contact between the cable elements was disregarded, because
higher priority was given to coiling the space web as close to the
center hub as possible.

Feedback control requires special treatment in FE codes because
of the dependence on the current state. In the object version of LS-
DYNA, the user can implement a function in the source code that
applies a force to selected shell or beam elements. To apply the
control torque, four planar shells with negligible mass were
symmetrically positioned in the center hub and force couples
corresponding to the desired torque were applied to the peripheral
nodes of the shells.

Results for Deployment of Webs and Membranes
Coiled Around the Hub

In this section, the arm deployment for the quadratic space web
introduced in [23,28], and described by the dynamic constraints in
Eqs. (22) and (27) and the constants inEqs. (10) and (11), serves as an
example of a web or membrane folded in the arms and coiled around

Table 1 Optimization criteria

Weight Objective function Description

w1

R tf
t0 �! � !f�2dt Squared deviation from the desired final angular velocity

w2

R tf
t0 �

2dt Squared angular deviation from the radial direction
w3

R tf
t0 _�2dt Squared arm oscillations

w4

R tf
t0 �L � Lmax�2dt Squared deviation from fully deployed length

w5

R tf
t0

_L2dt Squared spool oscillations
w6

R tf
t0 M

2dt Squared torque
w7

R tf
t0 N

2dt Squared arm tension
w8

R tf
t0 �M!�2dt Squared power

w9

R tf
t0 Mdt Total applied angular momentum

w10

R tf
t0 M!dt Total applied energy

w11 �
R tf
t0 Mdt � �Lf � L0��2 Deviation from required angular momentum

w12 �
R tf
t0 M!dt � �Kf � K0��2 Deviation from required energy

w13 ���tf� Final oscillation of the arm
w14 _!�tf� Final oscillation of the hub
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the center hub and therefore controlled only by the torque applied to
the hub.

The following data were used: the side length S� 100 m, the
mass of the center hub mh � 100 kg, the radius of the center hub
r� 6:3 m, the mass of the web mw � 122 kg, and the total mass of
all four cornersmc � 4 kg. Thewebmass was obtained by assuming
that the cablesweremade of the Zylonfibers in [51] and that themesh
widthwas 30mm. For the FEmodel, the elasticmodulus of the Zylon
cables Eca � 180 GPa, the density of the cables �ca � 1540 kg=m3,
the cross-sectional area of the cablesAca � 2:5=0:030 � 0:123 mm2,
and the mesh width 2.5 m were also included. The cross-sectional
area was adjusted so that the total mass of the web in the FE model
was equal to that of a real web with 30 mm mesh width. The initial
and final spin rates were chosen as !0 � �=10 and !f � �=50,
respectively.

The dynamic equations in the analytical models were solved in
MATLAB [52] using the ordinary differential equation solver ode45,
with an estimated relative error less than 0.001 in each integration
step. The FEmodel consisted of approximately 5000 activeDOF and
was solved in LS-DYNA using explicit integration and time steps of
size 1:14 � 10�4 s. The time step of the FE had to be small, at least
initially, because of the contact algorithm. The SQP problems, which
were derived from the optimal control problems, were solved in
Comsol Optimization Lab [47] with function tolerances and variable
tolerances equal to 1 � 10�8.

Deployment Using the MK Law

The MK law was used in [28] to control the deployment of the
quadratic space web, initially coiled around the center hub. The
problem with this control law is that excessive torque is required to
not induce oscillations (Fig. 4). A control law that eliminates or
decreases any oscillations is a requirement to obtain a tensionedweb.

Optimal Control of the Deployment

The choice of objective function was extremely important both for
the convergence and results of tested optimal control problems. For
cases 1 and 2 in Fig. 5, the objective was to minimize the integral of
the squared torque and the squared difference L � Lmax, with w6 �
w3 � 1 and all other weights in Table 1 equal to zero. The constraints
on the state and control variables also had a significant impact on the
results. The difference between cases 1 and 2 is that!was allowed to

fall to half the value in case 1 (!min � �=20) compared with case 2
(!min � �=10). Case 3 used the same constraints as case 2, but the
objectivewas tominimize a combination between the squared torque
(w6 � 1) and the squared differencesL � Lmax (w3 � 1) and! � !f
(w1 � 103). The Legendre polynomial of order 63 was used for the
discretization in Fig. 5, and of order 31 was used for verification of
the convergence.

All three optimal control curves suggest that no torque should be
applied initially, then the torque should be increased rapidly to
prevent the center hub from changing its direction of rotation. After
reaching its maximum value, torque should be applied to keep the
center hub rotating faster than the lowest acceptable level,!� !min.
Finally, the torque should be turned off slowly until the angular
momentum is sufficiently high to keep the system rotating at the
desired angular velocity.

Derivation of New Control Laws from the Optimal Control Results

One main advantage with the MK law is that it is directly
applicable, with appropriate parameters, to centrifugal deployment
using folding patterns and deployment sequences that are difficult to
model accurately (e.g., the one-step deployment of space webs used
in [28]). The reason is that the MK law is not directly derived for a
specific model, but is based on the simple idea that more torque is
required if ! is low, thus making the torque linearly decreasing with
increasing !. The optimal control results suggest a nonlinear control
torque that is smaller than the MK law when !
 0 and increases
more rapidly when !! 0. Another advantage is that additional
torque may be required to force a system to follow an optimal
trajectory if an inaccurate model was used to compute the optimal
trajectory. Additional torque may also be required for the MK law if
! < !min, but the risk for this can be considerably decreased by
careful parameter selection.

To resemble the optimal control torque more, while keeping the
simplicity, a power of the !-dependent factor in the MK law was
introduced:
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M � M̂
�
1 � !

!0

�
�

(38)

The parameter � should be sufficiently large to give a small !f , yet
sufficiently small to restrain the decrease of ! in the initial
deployment phase. Equation (38) is henceforth denoted as the MK
power law. Small, rapidly changing values of ! increase the risk of
getting a noncontrollable deployment, especially if there is a
significant lag from the measurement of !, via the computer unit, to
the torque application by the electric motor.

The main disadvantage with the MK power law is that it does not
include the final angular velocity. A different or supplementary
control law is therefore required to reach the desired final spin rate.
One option is to replace!0with!f and ensure thatM is nonnegative:

M�max

�
0; M̂

�
1 � !

!f

��
(39)

Equation (39) is denoted as the modified MK law. For this law,
M � 0 if ! � !f (i.e., in the initial and final phases of the
deployment).

Simulations Using the New Control Laws

Simulation results using the MK power law with M̂ � 50 or
200 Nm,!0 � �=10 rad=s, and � � 1 or 10 are shown in Fig. 6. The
larger value of � required lower torque and gave a lower final angular
velocity, given that the torque was turned off as soon as � was
sufficiently small to not induce large oscillations, and thus the total
angular momentum and energy consumption decreased substan-
tially. If only L is observed, the deployment time increased slightly
for a larger �, but taking into account that a web is in tension only
when� is close to zero, then the deployment time decreased. Another
advantage of an increased � is that it is much less sensitive to the
choice of M̂. When M̂ was decreased by a factor 4, so that !
decreased to almost 0, then the angular velocity decreased below 0

for � � 1 and oscillations were induced, whereas no oscillations
occurred for � � 10. Also, the maximum torque required for
different M̂ changed less for � � 10 than for � � 1.

ThemodifiedMK law is interesting because it ensures that!� !f
at the end of the deployment. Results from simulations using the
modified MK law with four different M̂ are shown in Fig. 7. For the
smallest M̂,! decreased to 0, which is a potential cause of instability.
For the largest M̂, excessive angular momentum was supplied to the
system, which inevitably gave rise to oscillations, because no energy
dissipates in the model and very little in reality. The amplitude of the
oscillations was proportional to the surplus of angular momentum in
the system compared with the angular momentum for a uniform
rotation at !� !f. The consequence is that M̂ must also be chosen
carefully for the modified MK law. Finally, note the close
resemblance between the control torque for the MK power law with
M̂� 50 and � � 10, the modified MK law with M̂� 50, and the
optimal control (Fig. 8).

Optimal Control of Only the Stabilization Phase

It is not certain that !f is reached for the MK law, for the MK
power law, and formany optimal controls in which the focus is on the
deployment phase (i.e., the coiling off of the arms from the hub).
Even though no such results were obtained, it should be noted that it
can be efficient to use a separate optimal control for the stabilization
phase (i.e., when j�j � �=2).

Finite Element Simulations

For one-step deployment of space webs, LS-DYNA was used to
test 1) theMKpower law (with � � 10), 2) themodifiedMK law, and
3) the MK law. M̂� 200 Nm was used for all three laws. The MK
power law and the modified MK law showed similar results (Fig. 9).
Higher torque, both maximum and mean, was required for the
originalMK law than for the two new laws. Themain consequence of
this is that !f became higher than desired for the MK law and was
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still increasing when the simulation ended. A higher !f implies
increased centrifugal force, which requires increased material
strength, and increased total angular momentum, which consumes
more energy. Another important result is that ! decreased below
zero, thus the hub changed direction of rotation, for the ordinaryMK
law, but not for the modified laws. The reason is that the new laws
react faster to a change of !when ! is small, even though the output
torque can be kept lower. Finally, the deployment is slightly faster for

the MK law if only L! Lmax is considered, but slower if �! 0 is
taken into account.

Results for Deployment of Membranes Coiled on Spools

For the deployment of the LOFT [8], both the torque applied to the
center hub and the tensile force in the spools, which is closely related
to the deployment rate, were used as control parameters. The data for
the LOFT were [8] mt � 149 kg, mc � 227 kg, mw � 282 kg,
mh � 1995 kg, R� 750 m, r� 2 m, !0 � 1 rad=s, and !f�
0:00916 rad=s.

First, the deployment approach described by Hedgepeth [8] was
employed. A constant torque of approximately 219 Nm was applied
during the first 9500 s, before it was turned off. Thus, the angular
momentum increased by 2:08 � 106 Nms, which is equal to the
angular momentum required for the LOFT to spin uniformly at
0:00916 rad=s at the end of the deployment. Hedgepeth also discov-
ered that a ramp-type tail-off of the torque reduced oscillations;
therefore, the torque was linearly decreased here during 50 s at the
end. Hedgepeth kept the total braking force constant at approxi-
mately 510 Nm when the torque was applied, then reduced it to a
smaller value that enabled the LOFT to be deployed to its full size.
Our results in Fig. 10 are in good agreement with the original results
presented by Hedgepeth, even though all parameters required to
repeat the simulations are not explicitly given in [8]. In the results,
Hedgepeth did not show separate results for _� and _�, only for ��
�� �, and found transients only at the initiation of the deployment
and at torque termination. However, the oscillations of the center
hub, which are present in Fig. 10, may be detrimental for the
deployment, even though the web is not oscillating.
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Optimal Control of the Deployment

Unsuccessful attempts were made to optimize the LOFT
deployment. It is more difficult to find converged optimal control
laws, compared with when only torquewas used, for several reasons:

1) There are more control and state variables.
2) It is more difficult to find a smooth initial guess because the

control suggested in [8] yields an oscillating solution.
3) The Coriolis force limits the deployment rate because � is not

allowed to exceed a certain value.
The main reason for the difficulty in finding a better solution may

also be that Hedgepeth’s control law already minimizes the integral
ofM, and for a given final time of 10,000 s, the integral ofM2 is also
almost minimized, with complementing conditions on full
deployment and final angular velocity.

Derivation of New Control Law from the Results

Compared with the original control by Hedgepeth, denoted as the
H law, less transients and higher deployment rate during the first
phase are desired. A constant torque is the most efficient way to
increase the angular momentum for a given Mmax, and constant
torque is probably advantageous for the electric motor. Therefore, it
seems natural to instead focus on how to control the deployment
velocity. A smaller braking force yields a faster deployment. At the
same time, angular momentum must be transferred from the center
hub to themembrane, andmore angular momentum is transferred for
a greater j’j or T. Also remember that for a membrane coiled on
spools, j’j � �=6 increases the risk for entanglement [9]. A
compromise is to increase the deployment rate as long as j’j does not
exceed a certain value  , which is acceptable for both deployment
time and entanglement risk, and vice versa:

�L� c� � j’j� (40)

Simulation results obtained using (40), denoted as the modified
H law, for the LOFT deployment are shown in Fig. 11. The high-
frequency oscillations in ! and ’ that were present in Fig. 10 are
avoided. The derivatives _L and _’ oscillated with high frequency, but
were allowed to do so. The deployment rate was higher in the first
phase for a higher  . However, the main part of the deployment still
occurred after the torque was terminated. The constant c, which
determines how fast the deployment rate responds to a change in  ,
also determined the deployment rate in the second phase. A slower
deployment may be desired in this phase to avoid springback, due to
tether elasticity, at full deployment. The nontransient deployment of
the second step was achieved due to the smooth decrease of T after
the torque termination, which can probably also be obtained for other
control laws (e.g., by lettingT decrease asL! Lmax).One drawback
with the modified H law is that its success is strongly dependent on
the parameters  and c, which must be obtained from simulations.
The initial values _L0 and !0 also have great influence on the results.
Different parameters can be used for the two phases in whichM ≠ 0
and 0, respectively.

Conclusions

We have suggested dynamic models and optimal control laws for
the centrifugal deployment of thewebs andmembranes in space. The
dynamic models assumewebs or membranes that are either 1) coiled
around the hub and controlled by the angular velocity of the hub or
2) coiled on spools and controlled by the angular velocity of the hub
and the deployment rate. The first coiling method has the advantages
that it includes less mechanisms that can fail or cause entanglement,
the deployment rate can be higher because the Coriolis force does not
cause entanglement, and it is easier to coil a large web or membrane
around the hub than onto smaller spools. The second method has the
advantage that it includes more redundancy because such control can
be used to limit the deployment rate, which could be important if !
decreases very rapidly toward zero. The second method is also
advantageous for coiling reasons if split membranes are used.

For webs and membranes coiled on spools, a law similar to the
H law can be used to obtain nontransient deployment. If the web or
membrane is instead coiled around the center hub, one proposed
control law introduces a power of the ! dependence of the MK law.
Another proposed law suggests that!0 is replacedwith!f in theMK
law and M� 0 for ! � !f. The results show that the control laws
based on theMK law are almost identical to the optimal control laws
for certain parameter values, yet the simplicity of the MK law
remains. The analytical model can be used to simulate the deploy-
ment and approximately determine the important M̂ for theMK laws.
Because of their simplicity, the MK laws can be implemented in FE
software that allows feedback control or user-defined loads, which
makes it possible to study the influence of perturbations or model
imperfections. A safety margin on M̂ may also be required for a real
application, but a too-high M̂ also gives rise to oscillations.

The response time from themeasurement of the rotational velocity
of the hub to the torque application was neglected. Should a
significant time lag exist, it implies that the steep gradient of the
torque, proposed by the optimal control and the modified MK laws
for the early phase of the deployment, increases the risk of failure,
especially because the torque gradient coincides with the most
critical phase of the deployment (i.e.,when!! 0). Tominimize this
risk, a slow deployment should be chosen.

The new control strategies were derived for simple examples.
However, the new control laws based on theMK lawwere useful also
for the one-step deployment in the FE model, and so it is expected to
be applicable to many different folding patterns and deployment
schemes.
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